本节扩展了一般椭圆曲线上密码协商的原理,原理更简单易于理解,接着讨论了大素数判定的方法,这是在密码学实现中普遍使用的方法,给出了简单的论证,并不详细
本节讲了SM2算法中的密钥协商过程,较迪菲赫尔曼密钥交换略有复杂,其实本质是一样的。最后证明了 为什么这样做可以得出相同的密钥?
本节讲了SM2签名算法,总体过程与secp256k1签名过程类似
本节讲了SM2算法的KDF函数,从一般用途到SM2特定实现
本节讲了SM2算法的推荐参数和加解密过程, 可以看出加密过程跟secp256k1不同点
回到在这篇公钥恢复的文章,讲了secp256k1曲线根据签名结果反推公钥的原理,本篇在这个基础上继续说实现的部分。
本节是Cipolla算法的补充说明,把上一节没有展开的,进行了说明。
本节讲了使用Cipolla算法求解二次剩余方程,该算法涉及内涵比较丰富,没有展开。
本节讲了二次剩余和判别二次剩余方程是否有解的欧拉准则,并且给出了欧拉准则的相关证明。
本节主要讲了Schnorr基于离散对数签名和Schnorr 群生成&用法。有了schnorr签名的基础,就可以继续学习相关的门限签名,零知识证明等对基础要求较高的内容。
本节主要说涉及到数论的一些知识和椭圆曲线上加法运算。
本文原计划要讲椭圆曲线中的爱德华曲线,鉴于很多朋友咨询sm2的问题,所以把sm2恢复公钥问题详细说一下,原理跟secp256k1曲线一样,没有什么新的内容,只是细节的变化。
本文主要说了EdDSA签名机制的发展及其优点
Uniswap协议采用的是常量乘积做市商模型,又称为“恒定乘积做市商模型“。
动态秘密共享方案可有效提高长周期密钥的安全性。本文介绍了典型的Amir Herzberg实现方案,默认情况下所有参与者都参与,恢复阶段只要大于或等于门限t个参与能够周期性地更新自己的密钥部分,就能达到目的,本质上是 n 个参与者协商了一个常数项为零的 t-1 次多项式!