本文中将使用Go语言开发一个基于Tendermint Core的区块链应用。
FCOIN 存在哪些问题?有效的激励应该是什么样的?
没,没有摘要~
本节主要介绍了RSA算法加解密过程及原理,RSA还有很多相关内容,包括签名,具体运算过程,背景知识,安全性等。后续几篇将分别介绍,以求知识系统的完备性。
费马小定理是初等数论四大定理(威尔逊定理,欧拉定理(数论中的欧拉定理),中国剩余定理(又称孙子定理),费马小定理)之一,其他定理如欧拉定理,之前文章也提过,后续会抽时间单独介绍。关于费马小定理的应用,在求解模逆运算的时候第一种方法便是使用费马小定理求解,还可应用在快速幂模运算等。
有了元交易 Meta-Transaction,区块链离出圈又近了一步。
Conflux团队注意到不论是中本聪共识还是GHOST共识,他们都是只维护一条主链,非主链的区块则被抛弃了,因此也就导致了这些被丢弃的块不能为整个区块链系统提供安全性,并且也降低了吞吐量(因为这些快被抛弃了,实际上也就是说系统的带宽被浪费了,因此他们就不能为系统贡献吞吐量)
本文介绍了ElGamal算法。其中过程又提到了费马小定理等。
并不是所有a,m 都存在模逆元,只有当a与m互质才有乘法模逆元存在。
Istanbul BFT作为BFT类算法的一种已经有过在以太坊上的实践。
程序员易懂的 ECDSA 原理简述
本节将总结下模运算的运算规则。更好地理解之前文章中一些推导过程。
区块链三大主流技术:以太坊(Ethereum),超级账本(Hyperledger Fabric),科尔达(R3-Corda)简单分析
本节介绍离散域上椭圆曲线进行迪菲赫尔曼密钥交换,并加以实例说明
公链安全漏洞频出,联盟链安全又该如何防患未然?
本节继续介绍离散域上椭圆曲线进行签名和验证过程,并加以实例说明。
本节将介绍如何使用离散域上椭圆曲线进行加密和解密过程。若果觉得阅读理解本文有困难,可以先参考之前的一些铺垫的历史文章。以后所说的椭圆曲线默认都是指离散域上模素数的椭圆曲线。
本节介绍如何让椭圆曲线点的坐标离散化。
本节主要说涉及到数论的一些知识和椭圆曲线上加法运算。
哈希算法是区块链成功的必要条件
12 篇文章,-40 学分